

Problem Definition and Motivations

Goal:

• The Burst Super-resolution is the task of *fusing several* low-resolution (LR) frames to produce a single highresolution (HR) image.

Motivations:

- Compared to *DSLR cameras*, LR images are usually obtained in many portable *mobile devices* with *com*pact camera sensors due to their physical limitations.
- Due to the *ill-posed* nature of the SISR problem, the existing SR methods have limited performance to recover high frequency details through single image learned priors.
- On the other hand, the *Multi-Frame Super-Resolution* (MFSR) aims to recover the latent HR image using *multiple LR frames* by exploiting the additional signal information due to *sub-pixel shifts*.
- Moreover, the existing Burst SR methods are *black*box data-driven approaches with larger model size due to *not* directly model the *image formation process*.

Network Architecture and Training

We *unroll* the RBSRICNN into K stages, where each stage computes the *refined estimate* of the SR image.

Loss function for the network training: We use the following function to minimize the ℓ_1 -Loss between the estimated latent SR image $(\mathbf{x}^{(k)})$ and ground-truth (GT) $(\mathbf{x}^{(gt)})$ after k-steps as:

 $\mathcal{L} = \arg\min_{\Theta} \mathcal{L}(\Theta) = \mathcal{L}(\Theta)$

Image forward observation model: $\mathbf{y}_i = \mathbf{MHS}_i(\tilde{\mathbf{x}}) + \eta_i, \quad i = 1, \dots, B$ (1)where, y_i is the *i*-th observed image of the LR burst B images, M is a mosaicking operator (i.e., usually Bayer CFA), H is a down-sampling operator (i.e., bilinear, bicubic, etc.), S_i is an *affine transformation* of the coordinate system of the image $\tilde{\mathbf{x}}$ (*i.e.*translation and rotation), and η_i is an additive *heteroskedastic Gaussian noise* related to photon shot and read noise. **Objective Function Minimization Strategy:**

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network

University of Udine, Italy. Code: https://git.io/JXw0T

Problem Formulation

• We want to recover the underlying image x as the minimizer of the objective function:

$$\hat{\mathbf{x}} = \operatorname*{arg\,min}_{\mathbf{x}} \frac{1}{2\sigma^2 B} \sum_{i=1}^{B} \|\mathbf{y}_i - \mathbf{MHS}_i(\mathbf{x})\|_2^2 + \lambda \mathcal{R}(\mathbf{x}), \quad (2)$$

• The Eq. (2) can be also written as:

$$\mathbf{J}(\mathbf{x}) = \underset{\mathbf{x}}{\operatorname{arg\,min}} \frac{1}{2\sigma^2 B} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \mathcal{R}(\mathbf{x}), \quad (3)$$

where, A=MHS corresponds to the *camera response*. • By using the *Majorization-Minimization* framework, we have final form of the solution:

 $\hat{\mathbf{x}}^{(k)} = rg\min{\mathbf{Q}(\mathbf{x};\mathbf{x}^{(k)})}$

$$= \tilde{d}\left(\mathbf{x}; \mathbf{x}^{(k)}\right) + \lambda \mathcal{R}(\mathbf{x})$$

$$= \frac{\alpha}{2\sigma^2 B} \|\mathbf{x} - \mathbf{z}^k\|_2^2 + \lambda \mathcal{R}(\mathbf{x}) + const.$$

$$= \operatorname{Prox}_{(\lambda/\alpha\sigma^2)\mathcal{R}(.)}(\mathbf{z}^k)$$
(4)

where, $\mathbf{z}^k = \mathbf{x}^k + \mathbf{A}^T (\mathbf{y} - \mathbf{A}\mathbf{x}^k) \Rightarrow$ $\mathbf{z}^{k} = \mathbf{x}^{(k)} + \frac{1}{B} \sum_{i=1}^{B} \mathbf{S}_{i}^{T} \mathbf{H}^{T} \mathbf{M}^{T} (\mathbf{y}_{i} - \mathbf{M}\mathbf{H}\mathbf{S}_{i}\mathbf{x}^{(k)})$ (See the Network Architecture diagram).

$$\sum_{i=1}^{N} \|\mathbf{x}_{i}^{k} - \mathbf{x}_{i}^{gt}\|_{1}$$

Dataset: • Synthetic Burst SR data: Use the 46,839 and 1204 sRGB images from the Zurich RAW to RGB dataset for the training and the validation, respectively. The sRGB image is first converted to the Raw (linear) sensor space using an *inverse camera pipeline*, then the LR burst is generated by applying *random translations and rotations*, followed by *bilinear downsampling*, further *mosaicked* and corrupted by *random noise*. • Real Burst SR data: Contains testset of 639 real-world LR bursts, where each burst sequence contains 14 RAW images captured using a handheld smartphone camera using *identical camera settings* (e.g., exposure, ISO) resulting in a small *random offset* between the images within the burst.

Compa

Impact of different number of input burst frames (B) and number of iterative steps (K):

Visual Results:

Rao Muhammad Umer, Christian Micheloni

Experiments & Results

Quantitative Results:

parison	with	other	Burst Sl	R methods	on $\times 4$	upscaling	factor:
						\mathbf{C}_{-}	

anson with other burst six methods on x r upscame ractor.									
Burst SR Method	#Params [M]	#Conv2d	Synthetic data			Real data			Fine-tuned
DUISUSIN METHOU		#COIIV20	PSNR ↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	on Real data
DeepJoint + RRDB	17.26	371	33.25	0.881	0.195	42.13	0.957	0.088	\checkmark
DeepBurstSR	5.25	48	34.48	0.905	0.118	45.17	0.978	0.037	
HighRes-net	1.11	25	34.30	0.891	0.170	43.99	0.972	0.051	
RBSRICNN (ours)	0.38	12	37.62	0.895	0.166	41.40	0.952	0.101	×

I							
Burst Size	iterati	ve steps (I	K = 5)	iterative steps $(K = 10)$			
(B)	PSNR ↑	SSIM↑	LPIPS↓	PSNR ↑	SSIM↑	LPIPS↓	
2	34.19	0.8790	0.2498	34.12	0.8777	0.2480	
4	34.69	0.8852	0.2359	34.66	0.8842	0.2317	
8	35.09	0.8887	0.2277	34.99	0.8876	0.2217	
14	35.12	0.8896	0.2255	35.30	0.8903	0.2165	
16	35.21	0.8907	0.2232	35.30	0.8909	0.2168	
32	35.23	0.8902	0.2236	35.41	0.8909	0.2159	

