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Problem Formulation
Problem: Cytomorphology as a image classification problem.
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Goal: Train a robust classifier for unseen target data of white blood cell classification by addressing cross-domain
data imbalance and domain shifts.
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Data and Experimental Results
Datasets: Statistics and properties of the three datasets used in our experiments.

Dataset # classes Image size Image resolution Single cell images

Matek_19 [1] 13 400× 400× 3
29.0 µm× 29.0 µm
= 13.8 pixels/micron 14681

Acevedo_20 [2] 10 360× 363× 3
36.0 µm× 36.3 µm
= 10 pixels/micron 11421

INT_20 13 288× 288× 3
25.0 µm× 25.0 µm
= 11.52 pixels/micron 26379

Quantitative Results:
• Imbalanced domain generalization classification results (mean±std) determined by five-fold cross-validation on

Acevedo_20 & Matek_19 validation sets and INT_20 testset (unseen domain). Our base-line model is ResNet50,
pretrained on ImageNet.

Methods F1-micro↑ F1-macro↑
ERM [3] 0.93 ±0.01 0.77 ±0.02

DANN [4] 0.87 ±0.03 0.67 ±0.04

CORAL (current SOTA DG) [5] 0.92 ±0.01 0.76 ±0.03

Ours 0.93 ±0.01 0.78 ±0.05

Ours+ 0.90 ±0.02 0.76 ±0.04

Methods F1-micro↑ F1-macro↑
ERM [3] 0.64 ±0.03 0.40 ±0.05

DANN [4] 0.59 ±0.07 0.35 ±0.06

CORAL (current SOTA DG) [5] 0.66 ±0.03 0.43 ±0.03

Ours 0.66 ±0.05 0.43 ±0.06

Ours+ 0.59 ±0.09 0.46 ±0.08

• Confusion matrices show an improved classification of cells from the lowly populated lymphocyte_atypical class
with our method compared to the standard ERM model on validation and test set, respectively.
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Network Training
Approach:
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Training Loss: L = argmin
θ

LCE + λLBoDA

Standard cross-entropy (CE) applied to output layer:

Balanced Domain-Class Distribution Alignment (BoDA) loss to tackle the data imbalance across domain-class pairs,
which is applied to the latent features:

Conclusions
• We develop a robust CNN model for out-of-distribution generalization in hematological cytomorphology classifi-

cation that tackles three main challenges: data imbalance, domain shifts, and missing classes.
• Our work shows how biological, epidemiological, and technical variabilities in hematologic single white blood cell

classification can be addressed for training classifiers.
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