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Single white blood cell classification

■ Clinical workflow for Acute Myeloid Leukemia (AML) diagnoses (Hematological diagnostics):

■ Cytomorphology as an image classification problem:
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Robust single white blood cell Classification

■ Key challenges for robust classification:
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Challenge # 1: Data imbalance

■ In-domain and across domains data imbalance:

■ Data imbalance is an intrinsic problem in medical data.

■ Learning domains naturally differ in their label distributions.

■ Domains can have (severe) class imbalance (long-tailed distribution) within each domain.
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Challenge # 2: Domain shift 
■ Domain shift within and across domains:

■ Data distribution shifts can have due to different staining procedures, different scanners or acquisition protocols 

(i.e., background light, focus), different magnifications / resolutions, and variations in clinical centers or patients.

■ Domains can have different distribution-shift within a domain and across domains.
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Challenge # 3: Missing classes

■ In-domain Missing classes:

■ In certain domain, we have no data at all for certain classes.

■ The classifier should also be generalized to the unseen classes as well.

■ Sometimes divergent labels distribution (Forward/backward LT) across domain can also occur to make the problem more 

complex.
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Proposed Methodology
■ Training setup of our robust WBC classification approach:
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Proposed Methodology

■ Network training loss:

ℒ = argmin
𝜽

ℒCE + 𝜆ℒBoDA

■ Standard cross-entropy (CE) applied to output layer:

ℒ𝐶𝐸( ƶ𝐲, 𝐲) = −
1

𝑁
∑𝑛=1
𝑁 𝐲𝑛log ƶ𝐲𝑛 + 1 − 𝐲𝑛 log 1 − ƶ𝐲𝑛

■ Balanced Domain-Class Distribution Alignment [5] (BoDA) loss to tackle the data imbalance across domain-class 

pairs, which is applied to the latent features:

ℒ𝐵𝑜𝐷𝐴(𝐳,𝝍) = ∑𝐳𝑖∈𝒵

−1

|𝒟| − 1
∑𝑑∈𝒟∖ 𝑑𝑖 log

exp −𝒘𝑑𝑖,𝑐𝑖

𝑑,𝑐𝑖 ƶd 𝐳𝑖 , 𝝍𝑑,𝑐𝑖

∑ 𝑑′,𝑐′ ∈ℳ∖ 𝑑𝑖,𝑐𝑖 exp −𝒘𝑑𝑖,𝑐𝑖

𝑑′,𝑐′ ƶd 𝐳𝑖 , 𝝍𝑑′,𝑐′
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Robust classification results

■ Results comparison:
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Robust classification results

■ Results comparison:

■ Confusion Matrix Comparison: Mat_Ace valset
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Robust classification results

■ Results comparison:

■ Confusion Matrix Comparison: MLL_20 testset (unseen)
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Conclusion

■ We develop a robust CNN model for out-of-distribution generalization in hematological cytomorphology 

classification that tackles three main challenges: data imbalance, domain shifts, and missing classes.

■ We show how existing pre-trained deep models can be improved for distinct domains by optimizing the 

loss function in the latent feature space and output logits of the network.

■ Our work shows how biological, epidemiological, and technical variabilities in hematologic single white 

blood cell classification can be addressed for training robust classifiers.
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