## Raw image space improves single-cell classification in Acute Myeloid Leukemia

# HELMHOLTZ MUNICH

### **Problem Definition and Motivation**



**Motivation:** 



- Myeloid Leukaemia (AML).
- color image space.

#### **Network Architectures and Training**

We use the following models with pretrained weights:

- **ResNet50** [2]: Pretrained on ImageNet dataset.
- ViT [4]: Vision Transformer, pretrained on ImageNet-21k dataset.

$$\mathcal{L}_{ce} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{F}_{i=1}$$

Rao Muhammad Umer, Christian Metak, and Carsten Marr Institute of AI for Health (AIH), Helmholtz Munich, Germany. Contact: raoumer.github.io

#### **Experimental Results**

**Dataset:** We evaluate our approach on the Matek\_19 AML [1] dataset, contains 18, 365 labeled single-cell RGB images (patch size :  $400 \times 400 \times 3$ ) with 15 cell types, and taken from peripheral blood smears of 100 patients diagnosed with AML.

#### **Quantitative Results:**

|  | sification Results | on testset | (1836 RGB | images, 10 <sup>o</sup> | % of total d |
|--|--------------------|------------|-----------|-------------------------|--------------|
|--|--------------------|------------|-----------|-------------------------|--------------|

| Methods      | <b>#Params</b> ↓ |                                  | <b>Precision</b> ↑ | <b>Sensitivity</b> | F1-score↑     | Weighted ↑    |  |  |
|--------------|------------------|----------------------------------|--------------------|--------------------|---------------|---------------|--|--|
|              |                  | [%]                              |                    |                    |               | <b>ROCAUC</b> |  |  |
|              |                  | Fine-tun                         | e the model la     | st layer (Linear   | fully connect | ted layer)    |  |  |
| ResNet50 [2] | 23.54            | 85.89                            | 0.86               | 0.86               | 0.86          | 0.95          |  |  |
| KimiaNet [3] | 7.00             | 86.77                            | 0.86               | 0.87               | 0.87          | 0.97          |  |  |
| VIT_B_16 [4] | 86.58            | 90.14                            | 0.89               | 0.90               | 0.90          | 0.98          |  |  |
|              |                  | Fine-tune the whole model layers |                    |                    |               |               |  |  |
| ResNet50 [2] | 23.54            | 96.57                            | 0.97               | 0.97               | 0.97          | 1.00          |  |  |
| KimiaNet [3] | 7.00             | 96.73                            | 0.97               | 0.97               | 0.97          | 1.00          |  |  |
| VIT_B_16 [4] | 86.58            | 96.57                            | 0.97               | 0.97               | 0.97          | 1.00          |  |  |
| VIT_B_32 [4] | 88.24            | 95.10                            | 0.95               | 0.95               | 0.95          | 1.00          |  |  |
| VIT_L_16 [4] | 304.34           | 96.19                            | 0.96               | 0.96               | 0.96          | 1.00          |  |  |
| VIT_L_32 [4] | 306.55           | 96.08                            | 0.96               | 0.96               | 0.96          | 1.00          |  |  |
|              |                  |                                  |                    |                    |               |               |  |  |

#### • Classification results with five-fold cross-validation:

| N | 0. | of | Cla |
|---|----|----|-----|
|   |    |    |     |

15

**Precision / Sensitivity / f1-score** 0.992 / 0.989 / 0.990

#### • RGB vs. RAW Classification results comparison on testset (1836 RGB images, 10% of total dataset):

**ResNet50** [2]

| Methods  | Datasets                 | Accuracy↑<br>[%] | <b>Precision</b> ↑ | <b>Sensitivity</b> ↑ | F1-score↑ | Weighted ↑<br>  ROC AUC |
|----------|--------------------------|------------------|--------------------|----------------------|-----------|-------------------------|
| ResNet50 | RGB space                | 96.57            | 0.97               | 0.97                 | 0.97      | 1.00                    |
| ResNet50 | RGB space + Augmentation | 96.02            | 0.96               | 0.96                 | 0.96      | 1.00                    |
| ResNet50 | Raw space                | 96.84            | 0.97               | 0.97                 | 0.97      | 1.00                    |

| itational Cost comparison on testset (1836 RGB images, 10% of total dataset): |              |                    |                 |               |               |                  |          |
|-------------------------------------------------------------------------------|--------------|--------------------|-----------------|---------------|---------------|------------------|----------|
|                                                                               | Methods      | Ave. Time↓<br>[ms] | #Params↓<br>[M] | FLOPs↓<br>[G] | #Acts↓<br>[M] | GPU Mem.↓<br>[M] | #Conv2d↓ |
| -                                                                             | ResNet50 [2] | 6.81               | 23.54           | 4.12          | 11.11         | 184.03           | 53       |
|                                                                               | KimiaNet [3] | 16.44              | 7.00            | 2.88          | 6.90          | 155.15           | 120      |
| -                                                                             | VIT_B_16 [4] | 7.78               | 86.58           | 17.6          | -             | 466.86           | 38       |

#### Conclusions

• We demonstrate the effectiveness of raw image space for WBC classification in the quantitative results. • We conclude that CNN-based classifiers are still better choice than attention-based for limited resource constrains.

#### References

[1] C. Matek, S. Schwarz, K. Spiekermann, and C. Marr, "Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks," *Nature Machine Intelligence*, 2019. [2] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in CVPR, 2016. [3] A. Riasatian *et al.*, "Fine-tuning and training of densenet for histopathology image representation using tcga diagnostic slides," Medical Image Analysis, 2021.

[4] A. Dosovitskiy *et al.*, "An image is worth 16x16 words: Transformers for image recognition at scale," in *ICLR*, 2020.



#### dataset):

#### CNN\_Matek\_19 [1]

0.952 / 0.939 / -